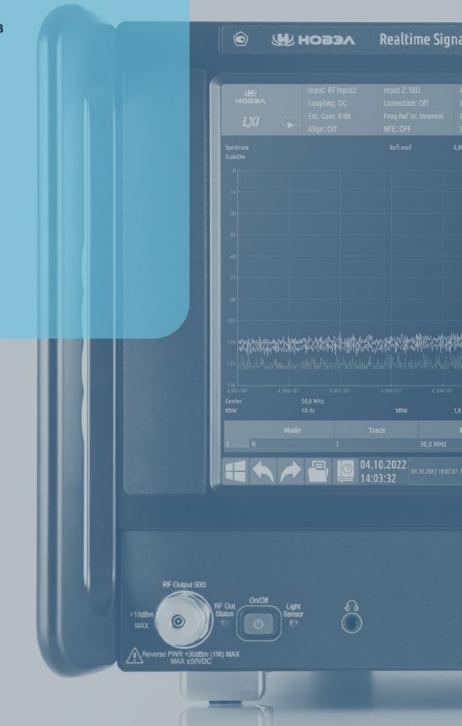


Каталог оборудования

Анализаторы сигналов и спектра

Генераторы сигналов



Антенны

СВЧ модули

Содержание

О компании	
Анализаторы сигналов и спектра	
Анализатор сигналов и спектра СК4-МАХ6	
Анализатор сигналов и спектра СК4-МАХ4	{
Генераторы сигналов	10
Аналоговый генератор сигналов Г4-РТА12	10
Аналоговый генератор сигналов Г4-РНА2	12
Анализаторы фазовых шумов	14
Анализатор фазового шума PSA	14
Анализаторы цепей векторные	' 16
серии Кобальт	
серии Компакт	18
СВЧ модули	20
Блок коммутации и управления ВССВСС	
Аттенюатор ступенчатый АТС	
СВЧ коммутатор МК104-40ТМ	24
Аксессуары	26
 Ключи тарированные KT-8, KT-19	
Ключи поддерживающие КП-6, КП-7, КП-8, КП-14, КП-19, КП-20	2
САПР «Полатор»	28
Автоматизированный комплекс радиоизмерений	3(
Сервисный центр	32
Метрологическая лаборатория	33
Наши компетенции	34
Работа в компании	
Справочный материал	37

О компании

Компания Новэл – это один из ведущих отечественных производителей радиоизмерительных решений. Обладая профессиональной командой специалистов и многолетним опытом разработки, Новэл успешно выполняет самые амбициозные проекты.

Наличие собственной высокотехнологичной производственной площадки, сертифицированной по ГОСТ Р ИСО 9001-2015, обеспечивает ответственный и качественный подход к реализации широкого спектра гражданских задач.

На сегодняшний день ведётся серийное производство оборудования высшего измерительного класса, что подтверждается свидетельствами о внесении типа в Госреестр СИ.

Активное инвестирование в исследование и разработки позволяет непрерывно расширять портфолио выпускаемой продукции.

Наше производство расположено в Москве по адресу ул. Новаторов д. 40к1.

Анализаторы сигналов и спектра

Анализатор сигналов и спектра СК4-МАХ6

© Госреестр СИ №85014-22

- Возможность оснащения прибора аппаратными и программными опциями
- Сенсорный дисплей
- Работа на базе Windows 10 или Astra Linux
- Поддержка IEEE488

Краткое описание

Анализатор СК4-МАХ6 является превосходным решением для разработчиков и производителей современных и перспективных средств радиосвязи, радиолокации, радионавигации, для отладки и измерения характеристик блоков модулей. Как с использованием базового функционала спектрального анализа, так и с применением специализированных опций, программное обеспечение анализатора позволяет проводить настройку и регулировку задающих генераторов и формирователей радиосигналов, усилителей, смесителей, конвертеров, пассивных устройств. Анализатор сигналов и спектра СК4-МАХ6 имеет возможность активации встроенного предусилителя для повышения чувствительности (опция LNA), а наличие переключателя режима AC/DC измерительного входа (опция АСС) позволяет обеспечить безотказность прибора при подаче ВЧ-сигнала с наличием постоянной составляющей напряжения вплоть до 50 В.

Кроме этого, поддержка коммуникационного стандарта IEEE488 позволяет использовать анализатор в составе автоматизированных измерительных комплексов и предусматривает подключение к беспроводным, кабельным или оптическим сетям Ethernet. Система и синтаксис команд унифицированы с решениями ведущих мировых производителей, также реализована возможность эмуляции перечня команд конкретных приборов. Предусмотрена возможность монтажа анализатора в 19-дюймовую стойку (типоразмер прибора 6U). Доступны два варианта реализации прибора, на базе операционной системы Windows 10 или на базе Astra Linux.

Ключевые особенности:

- Широкий диапазон частот от 1 Гц до 26,5/40 ГГц
- Полоса анализа 160 МГц
- Стандартные функции автоматизированных измерений OBW, CP, ACP, Harmonics
- Опция аналоговой демодуляции (АМ/ЧМ/ФМ)
- Опция измерения коэффициента шума
- Опция измерения спектральной плотности фазового шума
- Выходы ПЧ2/ПЧ3 с шириной полосы 180/50 МГц (опции IF2RP/IF3RP)
- Возможность монтажа в 19" стойку

Технические характеристики

Исполнение	ПТРВ.411168.001	ПТРВ.411168.001-01	
Диапазон рабочих частот	от 1 Гц до 40 ГГц	от 1 Гц до 26,5 ГГц	
Средний отображаемый уровень собственных шумов на частоте 1 ГГц		55 дБмВт/Гц Вт/Гц с опцией LNA	
Относительная спектральная плотность мощности фазовых шумов для частоты несущей 1 ГГц на отстройке 10 кГц	мину	с 124 дБн	
Диапазон ослаблений входного аттенюатора	от 0 до 65 дБ шаг 5 дБ	от 0 до 70 дБ шаг 10 дБ	
Номинальные значения полос пропускания по уровню минус 3 дБ	от 1 Гц	до 10 МГц	
Номинальные значения полос пропускания ПЭМИН/CISPR по уровню минус 6 дБ	30 Гц, 200 Гц, 9 кГц, 120 кГц, 1 МГц		

Доступны к заказу опции:

Код	Тип	Функциональное назначение
LNA	аппаратно-программная	Встроенный отключаемый предусилитель для улучшения чувствительности
ACC	аппаратно-программная	Встроенный отключаемый разделительный конденсатор на входе, позволяющий защитить входные цепи от постоянного напряжения
IF2RP/IF3RP	аппаратно-программная	Выход сигнала промежуточной частоты ПЧ2/ПЧ3 на заднюю панель
LOGVRP	аппаратно-программная	Выход сигнала огибающей логарифмического детектора ПЧЗ на заднюю панель
B160	аппаратно-программная	Максимальная ширина полосы анализа сигналов 160 МГц
NF	аппаратно-программная	Опция измерения коэффициента шума устройств
EMI	аппаратно-программная	Опция измерительного приемника для оценки ЭМС
PN	программная	Опция измерения спектральной плотности мощности фазового шума источников сигнала
ADEM	программная	Опция демодуляции сигналов с аналоговыми видами модуляции
RTSA	программная	Опция для работы в режиме реального времени

Анализаторы сигналов и спектра

Анализатор сигналов и спектра СК4-МАХ4

- Госреестр СИ
- Возможность оснащения прибора аппаратными и программными опциями
- Сенсорный дисплей
- Работа на базе Windows 10 или Astra Linux
- Поддержка IEEE488

Краткое описание

Анализатор СК4-МАХ4 является превосходным решением для разработчиков и производителей современных и перспективных средств радиосвязи, радиолокации, радионавигации, для отладки и измерения характеристик блоков модулей. Как с использованием базового функционала спектрального анализа, так и с применением специализированных опций, программное обеспечение анализатора позволяет проводить настройку и регулировку задающих генераторов и формирователей радиосигналов, усилителей, смесителей, конвертеров, пассивных устройств. Анализатор сигналов и спектра СК4-МАХ4 имеет возможность активации встроенного предусилителя для повышения чувствительности (опция МАХ4-А2).

Кроме этого, поддержка коммуникационного стандарта IEEE488 позволяет использовать анализатор в составе автоматизированных измерительных комплексов и предусматривает подключение к беспроводным, кабельным или оптическим сетям Ethernet. Система и синтаксис команд унифицированы с решениями ведущих мировых производителей, также реализована возможность эмуляции перечня команд конкретных приборов. Предусмотрена возможность монтажа анализатора в 19-дюймовую стойку (типоразмер прибора 4U). Доступен вариант реализации прибора на базе операционной системы Astra Linux.

Ключевые особенности:

- Широкий диапазон частот от 3 Гц до 8,4/13,6/26,5 ГГц
- Полоса анализа 40/80 МГц
- Выход ПЧ 280 МГц
- Стандартные функции автоматизированных измерений OBW, CP, ACP, Harmonics
- Возможность монтажа в 19" стойку
- Диагональ сенсорного дисплея 25 см

Технические характеристики

Диапазон рабочих частот	от 3 Гц до 8,4/13,6/26,5 ГГц		
Максимальная ширина полосы анализа	40/80 МГц		
Диапазон ослабления механического аттенюатора:	от 0 до 70 дБ,	шаг 10 дБ	
Средний отображаемый уровень собственных шумов	центральная частота св. 1,0 ГГц	не более минус 168 дБмВт	
	центральная частота св. 3,6 ГГц	не более минус 167 дБмВт	
при включенном предусилителе	центральная частота св. 8,4 ГГц	не более минус 168 дБмВт	
	центральная частота св. 13,6 ГГц	не более минус 160 дБмВт	
Относительная спектральная плотность мощности фазовых шумов для несущей 1 ГГц	при отстройке 10 кГц	не более минус 124 дБн/Гц	
Срок гарантии	3 года (или 5 опционально)		

Код	Тип	Функциональное назначение
MAX4-A1	аппаратно-программная	Встроенный отключаемый разделительный конденсатор на входе анализатора, позволяющий защитить его входные цепи от постоянного напряжения
MAX4-A2	аппаратно-программная	Встроенный отключаемый предусилитель для улучшения чувствительности анализаторов
MAX4-A3	аппаратно-программная	Входной аттенюатор с шагом ослабления 5 дБ
MAX4-A6	аппаратно-программная	Удаленное управление по IEEE-488
MAX4-B40	аппаратно-программная	Максимальная ширина полосы анализа сигналов 40 МГц
MAX4-B80	аппаратно-программная	Максимальная ширина полосы анализа сигналов 80 МГц
MAX4-P7	программная	Опция демодуляции сигналов с аналоговыми видами модуляции
MAX4-P30	программная	Опция измерения модуля коэффициента шума устройств
MAX4-P40	программная	Опция измерения спектральной плотности мощности фазового шума источни- ков сигнала

Генераторы сигналов

Аналоговый генератор сигналов Г4-РТА12

Госреестр СИ №94042-24

- Малое время установления частоты и уровня
- Высокая выходная мощность
- Низкие фазовые шумы
- Удалённое управление

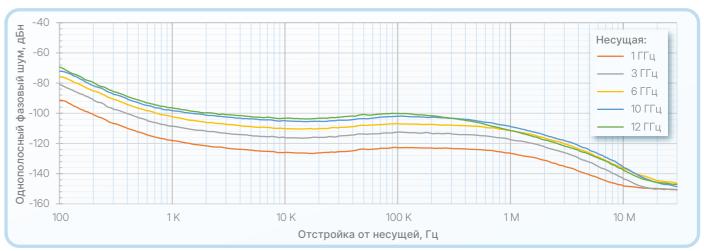
Краткое описание

Компактный и экономичный генератор сигналов серии Г4-РТА12 предназначен для формирования немодулированных синусоидальных СВЧ сигналов с нормированным уровнем мощности и частотой. Также доступны дополнительные режимы:

- качание по частоте
- импульсная модуляция (внешний вход)

Генератор сигналов может применяться при исследовании, настройке, контроле, испытании и производстве СВЧ-устройств, модулей и блоков, используемых в радиосвязи, радиовещании и радиолокации.

Также прибор может с успехом применяться при ЭМС испытаниях и для обучения специалистов-радиотехников в специальных учебных заведениях.


Удаленное управление генератором сигналов Г4-РТА12 осуществляется интерфейсом управления LAN и USB с внешнего персонального компьютера по универсальному протоколу SCPI. Это позволяет использовать генератор в автоматизированных контрольно-измерительных комплексах.

Ключевые особенности:

- Диапазон рабочих частот: от 10 Гц до 12 ГГц
- Точность установки частоты, не хуже: $\pm 1 \times 10^{-6}$
- Диапазон уровня выходного сигнала: минус 90 ... +20 дБмВт
- Спектральная плотность мощности фазового шума на частоте 1 ГГц при отстройке 10 кГц, не более: минус 120 дБ/Гц
- Выходной разъём: SMA (розетка)
- Масса не более 7 кг.

Технические характеристики

Диапазон рабочих частот		10 Гц — 12 ГГц		
		1 кГц	не более минус 112 дБн	
Относительная спектральная плотность мощ	ности фазовых шумов	10 кГц	не более минус 120 дБн	
для частоты несущей 1 ГГц при отстройке от несущей, не более:	есущей, не более:	100 кГц	не более минус 116 дБн	
	1 МГц	1 МГц	не более минус 120 дБн	
Уровень подавления гармонических составля	лющих	MV	інус 30 дБн	
Уровень подавления негармонических соста частот от 6 до 12 ГГц	вляющих в диапазоне	MV	нус 60 дБн	
Диапазон уровней выходной мощности		стандартно	от +12 до +20 дБмВт	
		опция РТА-А1	от минус 90 до + 20 дБмВт	
Абсолютная погрешность установки уровня			± 1 дБ	

Уровень фазовых шумов

Максимальная мощность

Доступны к заказу опции:

Код	Назначение
PTA-A1	Расширение динамического диапазона от минус 90 до +20 дБмВт
PTA-A2	Модуль коммутации СВЧ-сигналов 1/4
PTA-A3	Модуль коммутации СВЧ-сигналов 1/6
PTA-A4	Усиленный корпус

Генераторы сигналов

Аналоговый генератор сигналов Г4-РНА2

Госреестр СИ №92552-24


- Компактный и экономичный генератор
- Удовлетворяет требованиям нормативных документов ФСТЭК
- Режим качания частоты (свипирование)
- Поддержка IEEE488

Краткое описание

Г4-РНА2 – это очень компактный и экономичный аналоговый генератор, который будет полезен для выполнения измерительных задач в полевых условиях, благодаря возможности установки внутреннего аккумулятора (опция РНА-А1). Возможна работа в автономном режиме без внешней сети питания 220 В не более 1 часа при выходном уровне +20 дБмВт. Компактное исполнение (размеры 261 х 174 х 111 мм) и малый вес позволят выполнять измерительные задачи в самых труднодоступных местах.

С генератором Г4-РНА2 больше не придётся искать компромисс между портативностью и ВЧ-производительностью, ведь характеристики базовой модели могут быть улучшены путем установки аппаратных или программных опций. Удалённое управление генератором осуществляется интерфейсом управления LAN с внешнего персонального компьютера по универсальному протоколу SCPI.

Ключевые особенности:

- Диапазон рабочих частот: от 9 кГц до 12 ГГц
- Дискретность установки значений частоты: 1 Гц
- Точность установки частоты, не хуже: $\pm 1 \times 10^{-6}$; с опцией PHA2-A2: $\pm 2 \times 10^{-7}$
- Дискретность установки уровня: 1 дБ
- Предел допускаемой погрешности установки уровня сигнала: ±1 дБ
- Уровень подавления спектральных составляющих:
 - гармонические составляющие минус 30 дБ;
- негармонические составляющие минус 58 дБ.
- Масса со встроенной аккумуляторной батареей не более 3 кг

Области применения

Генератор перекрывает все классические задачи по исследованию, настройке, контролю и испытаниям при производстве СВЧ-устройств и оборудования, используемых в радиосвязи, радиолокации, приборостроении и измерительной технике. Имеется необходимый набор функций для:

- оценки эффективности защиты от утечки информации;
- измерения реального затухания сигнала;
- измерений паразитных излучений.

Также, сочетая Г4-РНА2 с измерительными антеннами (например АСД), вы сможете создать компактные измерительные комплексы.

Технические характеристики

	для исполнения БЮЛИ.467875.002	9 кГц – 12 ГГц
	для исполнения БЮЛИ.467875.002-01	100 МГц – 12 ГГц
Диапазон рабочих частот	для исполнения БЮЛИ.467875.002-02	9 кГц – 7,5 ГГц
	для исполнения БЮЛИ.467875.002-03	100 МГц – 7,5 ГГц
	100 Гц	не более минус 63 дБн
Относительная спектральная плотность	1 кГц	не более минус 108 дБн
мощности фазовых шумов для частоты	10 кГц	не более минус 111 дБн
несущей 1 ГГц при отстройке от несущей, не более:	100 кГц	не более минус 118 дБн
	1 МГц	не более минус 141 дБн
	10 МГц	не более минус 150 дБн
The same of the sa	стандартно	от 0 до +20 дБмВт
Диапазон уровня выходной мощности	опция РНА-А3	от минус 30 до +20 дБмВт
Шаг установки уровня	1 дБ	
Абсолютная погрешность установки уровня	±1,0 дБ	

Тип	Обозначение
PHA-A1	Встроенная аккумуляторная батарея
PHA-A2	Термокомпенсированный опорный генератор (TCXO)
PHA-A3	Расширение динамического диапазона от минус 30 до +20 дБмВт

Анализаторы фазовых шумов

Анализатор фазового шума PSA

🕝 Госреестр СИ

- Измерение фазового шума в непрерывном и импульсном режимах
- Анализ импульсных сигналов и внутриимпульсной модуляции
- Анализ спектра
- Анализ переходных процессов

Краткое описание

Анализатор фазового шума PSA предназначены для измерения фазовых шумов источников непрерывных и импульсно-модулированных СВЧ колебаний.

Для увеличения чувствительности прибор PSA оснащён встроенным алгоритмом кросскорреляции с использованием второго канала приемника. Фазовый шум: -151дБн/Гц на 1 ГГц ВЧ (отстройка 10 кГц, 100000 корреляций);

Также прибор работает в режиме анализа спектра со следящим генератором.

Конструктивно анализаторы фазового шума PSA выполнены в виде настольного моноблока. Управление прибором осуществляется с помощью внешнего ПЭВМ по интерфейсу USB 3.0.

Ключевые особенности:

- Диапазон рабочих частот от 100 кГц до 8/13/26 ГГц
- Встроенный следящий генератор от 50 МГц до 26 ГГц
- Измерение фазового шума, —151 дБн/Гц при отстройке 10 кГц для сигнала с частотой 1 ГГц при 100000 корреляций
- Кросс-корреляционный алгоритм с числом корреляций от 1 до 100 000
- Скорость сканирования до 15 ГГц/с
- Запись и воспроизведение сигнала с шириной полосы 20 МГц через SSD (и 1 МГц через HDD)
- Встроенный 10-разрядный частотомер
- Встроенная защита входов и выходов от электростатического разряда (ЭСР, ESD)

Технические характеристики

Частотный диапазон		от 100 кГц до 8/13/26 ГГц				
Диапазон отстроек		от 10 Гц до 10 МГц				
Точность определения ФШ		±3 дБ (от 10 Гц до 1 кГц отстройки)				
		±2 дБ (от 1 кГц до 10 МГц отстройки)				
Количество кросс-корреляций	от 1 до 100 000 в зависимости от отстройки					
Улучшение чувствительности измерения ФШ в зависимости от количества кросс-корреляций:						
корреляций	10	100	1000	10 000	100 000	
улучшение на	5 дБ	10 дБ	15 дБ	20 дБ	25 дБ	
* Uvectenteльность к измерению фаз	OBLIV IIIVMOE	лБи/Ги рех	VIAM BUVTDAL	JUATO I O TO	2VT (1 ± 2) KDOC	с-корреданий – 1

^{*} Чувствительность к измерению фазовых шумов, дБн/Гц, режим внутреннего LO, тракт (1 + 2), кросс-корреляций = 1 Low-Spur Mode – выкл, предусилитель – выкл:

Hagrara nagamaš	Отстройка от несущей						
Частота несущей	10 Гц	100 Гц	1 кГц	10 кГц	100 кГц	1 МГц	10 МГц
10 МГц	- 99	- 140	-151	-152	- 152	- 152	- 152
100 МГц	-75	-117	-131	-139	-140	-141	-141
1 ГГц	- 60	- 100	-115	-126	-129	-140	-143
3 ГГц	- 49	-90	-106	-118	-120	-130	- 142
9 ГГц	- 37	-80	-96	-108	-110	- 125	- 145
3 ГГц	-30	-73	-90	-102	-104	- 119	-142
26 ГГц	-30	-70	- 89	- 99	- 101	- 113	- 138

Код	Назначение
PSA-HTG	Источник сигнала/Следящий генератор, 0.1 МГц – 8/13/ 26 ГГц (в зависимости от модели PSA)
PSA-PPNA	Опция измерения фазового шума в импульсе
PSA-RTA	Опция анализа спектра в реально масштабе времени, 20 МГц, POI-3мкс
PSA-FRA	Опция измерения АЧХ, 30 МГц – 26 ГГц (требуется опция PSA-HTG26)
PSA-TA	Опция анализа переходных процессов
PSA-RMU19	Набор для монтажа PSA в стойку 19", размер 2 HU
PSA-OHC	Ударопрочный пластиковый кейс для транспортировки с внутренним ложементом для PSA, ПК 17" и принадлежностей.

Анализаторы цепей векторные

Анализатор цепей векторный серии Кобальт

- Прецизионные измерения
- Диапазон рабочих частот до 20 ГГц (до 110 ГГц с модулями расширения частотного диапазона)
- Широкий динамический диапазон
- Высокая точность измерений
- Удаленное управление

Краткое описание

Анализаторы цепей векторные серии Кобальт позволяют проводить прецизионные измерения электрических параметров радиотехнических цепей и устройств в широком диапазоне частот. Приборы отличаются верхней границей диапазона рабочих частот, количеством измерительных портов, расположенных на передней панели, наличием соединителей для прямого доступа к входам измерительных и опорных приёмников, а также наличием соединителей для подключения расширителей по частоте.

Область применения анализаторов цепей - проверка, настройка, исследования и разработка радиотехнических устройств, используемых в радиоэлектронике, связи, радиолокации, измерительной технике, в условиях промышленного производства и лабораторий.

Анализаторы цепей имеют двух и четырёхпортовое исполнение. Работают в широком диапазоне частот, обладают превосходным динамическим диапазоном и высокой скоростью измерений с максимальным набором функций программного обеспечения, позволяющим решать большинство измерительных задач производства.

Анализаторы работают под управлением внешнего персонального компьютера с установленным программным обеспечением, которое проводит обработку информации и выполняет функцию пользовательского интерфейса.

Удалённое управление осуществляется интерфейсом управления USB 2.0 по универсальному протоколу SCPI

Ключевые особенности:

- Диапазон рабочих частот: от 0,1 МГц до 20 ГГц
- Количество измерительных портов: 2/4
- Измеряемые параметры: S₁₁ ... S₄₄
- Динамический диапазон, не менее: 130 дБ
- Диапазон выходной мощности: от минус 60 до +10 дБмВт (в зависимости от модели)
- Время измерения на одной частоте, не более: 200 мкс
- Количество точек измерений за одно сканирование: от 2 до 200 001

Технические характеристики

Тип	Частотный диапазон	Волновое сопротивление/ кол-во портов	Измеряемые параметры	Динамический диапазон	Диапазон выходной мощности
C1209	от 0,1 МГц до 9,0 ГГц	50/2	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂	160	-60 +15
C2209	от 0,1 МГц до 9,0 ГГц	50/2 прямой доступ к приёмникам	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂	160	-60 +15
C1409	от 0,1 МГц до 9,0 ГГц	50/4	S ₁₁ S ₄₄	160	-60 +15
C2409	от 0,1 МГц до 9,0 ГГц	50/4 прямой доступ к приёмникам	S ₁₁ S ₄₄	160	-60 +15
C1220	от 0,1 МГц до 20 ГГц	50/2	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂	145	-60 +10
C2220	от 0,1 МГц до 20 ГГц	50/2 прямой доступ к приёмникам	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂	145	-60 +10
C1420	от 0,1 МГц до 20 ГГц	50/4	S ₁₁ S ₄₄	145	-60 +10
C2420	от 0,1 МГц до 20 ГГц	50/4 прямой доступ к приёмникам	S ₁₁ S ₄₄	145	-60 +10
C4209	от 0,1 МГц до 9,0 ГГц	50/2 с возможностью расширения до 110 ГГц	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂	160	-60 +15
C4409	от 0,1 МГц до 9,0 ГГц	50/4 с возможностью расширения до 110 ГГц	S ₁₁ S ₄₄	160	-60 +15
C4220	от 0,1 МГц до 20 ГГц	50/2 с возможностью расширения до 110 ГГц	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂	145	-60 +10
C4420	от 0,1 МГц до 20 ГГц	50/4 с возможностью расширения до 110 ГГц	S ₁₁ S ₄₄	145	-60 +10
TFE1854	от 18 ГГц до 56 ГГц	50/1	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂ при использовании двух модулей	130	-20 +3
Вектор	от 50 ГГц до 178 ГГц	50/1	$S_{11}, S_{21}, S_{12}, S_{22}$ при использовании двух модулей	145	-60 +10

Код	Назначение
C1209	Анализатор цепей векторный
C1409	Анализатор цепей векторный
C2209	Анализатор цепей векторный
C2409	Анализатор цепей векторный
C1220	Анализатор цепей векторный
C1420	Анализатор цепей векторный
C2220	Анализатор цепей векторный
C2420	Анализатор цепей векторный
TFE1854	Модуль расширения частотного диапазона

Анализаторы цепей векторные

Анализатор цепей векторный серии Компакт

© Госреестр СИ №87310-22

- Компактный и экономичный анализатор цепей векторный
- Диапазон рабочих частот до 44 ГГц
- Широкий динамический диапазон
- Высокая точность измерений
- Удаленное управление

Краткое описание

Анализаторы цепей векторные серии Компакт, обеспечивают измерения комплексных коэффициента передачи и отражения (элементов матрицы рассеяния) многополюсников. Анализаторы цепей являются компактной серией приборов и предназначены для проверки, настройки и разработки устройств в условиях промышленного производства и лабораторий, в том числе, в составе автоматизированных измерительных стендов.

Анализаторы цепей имеют двух и четырёхпортовое исполнение. Работают в широком диапазоне частот, обладают превосходным динамическим диапазоном и высокой скоростью измерений в небольшом корпусе с максимальным набором функций программного обеспечения, позволяющим решать большинство измерительных

Анализаторы работают под управлением внешнего персонального компьютера с установленным программным обеспечением, которое проводит обработку информации и выполняет функцию пользовательского интерфейса.

Удалённое управление осуществляется интерфейсом управления USB 2.0 по универсальному протоколу SCPI.

Ключевые особенности:

- Диапазон рабочих частот: от 0,02 до 44 ГГц
- Количество измерительных портов: 2/4
- Измеряемые параметры: S₁₁ ... S₄₄
- Динамический диапазон, не менее: 120 дБ
- Диапазон выходной мощности: от минус 50 до +10 дБмВт (в зависимости от модели)
- Минимальный шаг установки частоты: 1 Гц
- Время измерения на одной частоте, не более: 200 мкс
- Количество точек измерений за одно сканирование: от 2 до 200 001
- Волновое сопротивление выхода: 50 Ом

Технические характеристики

Тип	Частотный диапазон	Волновое сопротивление/ кол-во портов	Измеряемые параметры	Динамический диапазон	Диапазон выходной мощности
TR1300/1	от 300 кГц до 1,3 ГГц	50/2	S ₁₁ , S ₂₁	130	-55 +3
S7530	от 20 кГц до 3,0 ГГц	75/2	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂	123	-50 +5
S5045	от 9 кГц до 4,5 ГГц				
S5065	от 9 кГц до 6,5 ГГц	50/2	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂	135	-50 +5
S5085	от 9 кГц до 8,5 ГГц				
S50180	от 0,1 МГц до 18 ГГц	50/2	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂	140	-45 +10
S50244	or 10 MEU no 14 FF:	50/2	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂	125	FO 0
S50444	от 10 МГц до 44 ГГц	50/4	S ₁₁ S ₄₄	135	-50 0
SN9000	от 300 кГц до 9 ГГц	50 6 до 16	S ₁₁ , S ₂₁ S ₁₅ , S ₁₆	138	-45 +10

Код	Назначение
TR1300/1	Анализатор цепей векторный
S7530	Анализатор цепей векторный
S5045	Анализатор цепей векторный
S5065	Анализатор цепей векторный
S5085	Анализатор цепей векторный
S50180	Анализатор цепей векторный
S50244	Анализатор цепей векторный
S50444	Анализатор цепей векторный
SN9000	Анализатор цепей векторный

Блок коммутации и управления ВСС

- Компактный и экономичный
- Управление по SCPI через USB и Ethernet
- Для любых видов СВЧ стендов и установок

Краткое описание

Блок коммутации и управления RF switch BCC предназначен для переключения сигнальных линий в составе испытательных СВЧ-стендов или для коммутации контрольно-измерительного оборудования между тестируемыми устройствами.

ВСС доступен в нескольких исполнениях, так возможно оснащение модулями электромеханических реле, работающими по схеме однополосной контактной группы 1 в 4 или 1 в 6. Управление осуществляется кнопками на лицевой панели или командами SCPI по средствам интерфейсов USB и Ethernet.

Рис. 1 Модуль коммутации СВЧ-сигналов а) 1 в 4 и б) 1 в 6

Благодаря ВСС можно выполнить несколько тестов без частых подключений и отключений, что существенно повышает производительность. При этом возможность удаленного управления позволит автоматизировать процесс измерений.

Ключевые особенности:

- Диапазон частот от 0 до 18 / 26,5 ГГц
- Вносимые потери до 18 ГГц: не более 0,5 дБ
- Тип CBЧ соединителя: SMA розетка
- Изоляция между каналами: не хуже 60 дБ
- Переключение 15 мс, количество переключений 2x10⁶
- КСВ не хуже 1,5
- Питание 220 В

Технические характеристики

	для исполнения ВСС14	DC – 18,0 ГГц		
	для исполнения ВСС16	DC – 18,0 ГГц		
Диапазон рабочих частот:	для исполнения ВСС24	DC – 26,5 ГГц		
	для исполнения ВСС26	DC – 26,5 ГГц		
Входной/выходной импеданс	50 Ом			
	от 0 до 6 ГГц	70 дБ		
200000000000000000000000000000000000000	от 6 до 12 ГГц	60 дБ		
Развязка между портами (изоляция)	от 12 до 18 ГГц	60 дБ		
	от 18 до 26,5 ГГц	55 дБ		
	от 0 до 6 ГГц	1,3		
KCBH	от 6 до 12 ГГц	1,4		
NCBH .	от 12 до 18 ГГц	1,5		
	от 18 до 26,5 ГГц	1,6		
	от 0 до 6 ГГц	0,3 дБ		
Вносимые потери	от 6 до 12 ГГц	0,4 дБ		
вносимые потери	от 12 до 18 ГГц	0,5 дБ		
	от 18 до 26,5 ГГц	0,6 дБ		
Скорость переключения	15 мс			
Тип РЧ соединителя	SMA (розетка)			
Режим управления	ручной / дистанционный			
Удаленное управление	USB, LAN			

Код	Назначение
BCC14	Блок коммутации и управления 2 секции, порты 1 в 4 до 18 ГГц
BCC16	Блок коммутации и управления 2 секции, порты 1 в 6 до 18 ГГц
BCC24	Блок коммутации и управления 2 секции, порты 1 в 4 до 26,5 ГГц
BCC26	Блок коммутации и управления 2 секции, порты 1 в 6 до 26,5 ГГц

Аттенюатор ступенчатый АТС

- С Госреестр СИ
- Компактный и экономичный
- Неограниченное количество переключений
- Удалённое управление по SCPI

Краткое описание

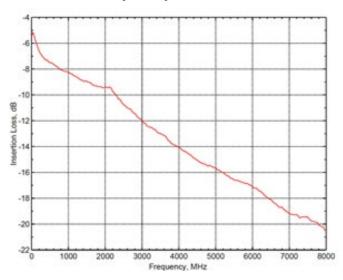
АТС – это универсальный и высокоэффективный ступенчатый аттенюатор с диапазоном рабочих частот от 300 кГц до 8 ГГц, применяемый для ослабления уровня высокочастотных электромагнитных колебаний в различных радиотехнических устройствах (генераторы, приемники, испытательные установки и т. д.).

Прибор поддерживает два режима работы:

- Постоянное затухание (Continuous attenuation)
- Перестраиваемое затухание (Sweep attenuation)

В режиме перестраиваемого затухания (Sweep attenuation) доступно четыре регулируемых параметра:

- Начальное и конечное значение затухания
- Время задержки
- Форма: пила или треугольник
- Запуск: внутренний или внешний
- Режим запуска: автоматический, одиночный или ручной


Поскольку ступенчатый аттенюаторы предназначен для внесения ослабления, которое зависит от частоты, то для коррекции используется значение несущей частоты. Также можно учитывать потери в кабеле.

Управление настройками аттенюатора производится с помощью кнопок на передней панели индикаторного блока с одновременным их отображением на экране или по средствам универсального протокола SCPI через интерфейсы управления USB и RS-232.

Ключевые особенности:

- Диапазон рабочих частот: от 300 кГц до 8 ГГц
- Волновое сопротивление: 50 Ом
- Диапазон ослаблений: от 0 до 111,5 дБ
- Шаг перестройки ослабления: 0,5 дБ
- Тип РЧ соединителя: SMA, розетка
- Максимальная мощность входного сигнала: +25 дБм (316 мВт)
- Время переключения: 1 мс (от нарастающего фронта сигнала запуска)
- Возвратные потери при ВКЛ. ослаблении: -20 дБ (тип.)
- Возвратные потери при ВЫКЛ. ослаблении: -15 дБ (тип.)
- Пределы допускаемой абсолютной погрешности установки ослабления: 0,3 дБ + 1% от значения ослабления

Технические характеристики

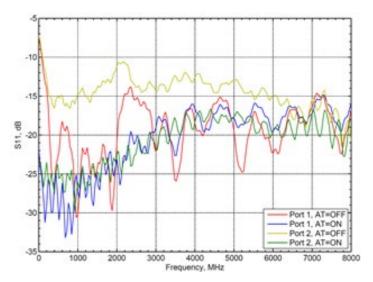


График вносимых потерь

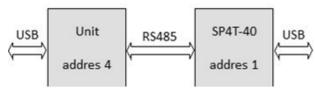
График коэффициента отражения S11

Код	Назначение
ATC	Аттенюатор ступенчатый до 8 ГГц

СВЧ коммутатор МК104-40ТМ

- Компактный и лёгкий
- Неограниченное количество переключений
- Удалённое управление по SCPI

Краткое описание


МК104-40TM - это твердотельный широкополосный радиочастотный переключатель (ШРПЧ) SP4T-40 используемый для коммутации СВЧ-сигналов в коаксиальном тракте с волновым сопротивлением 50 Ом.

Переключатель используется как самостоятельное устройство с питанием и управлением через интерфейс USB Туре-С или в составе радиотехнических систем. Также возможно управление через интерфейс RS-485 с помощью команд SCPI через библиотеку VISA.

ШРЧП способен функционировать в частотном диапазоне от 40 до 45 ГГц.

Управление

Приборы могут соединятся по интерфейсу RS-485 в локальную сеть. Каждый прибор может выполнять функции ретранслятора с USB на интерфейс RS-485.

Каждому прибору, для управления по интерфейсу RS485, должен быть присвоен адрес, уникальный в локальной сети RS485. Прибор ретранслятор, получив команду по USB интерфейсу, анализирует ее, и если команда адресована не ему, передает эту команду на интерфейс RS-485. Если адресуемый прибор отсутствует в локальной сети RS-485, или связь с ним нарушена, прибор ретранслятор возвращает по USB интерфейсу ответ «RS485 CONNECT ERROR».

Ключевые особенности:

- Диапазон рабочих частот: 1 МГц...40 ГГц
- Конфигурация: 1Р4Т
- Потери: не более 8,5 дБ
- Максимальная коммутируемая мощность: не менее 30 дБм
- КСВН: не более 2.0
- Изоляция: не менее 40 дБ
- Напряжение питания: 5±0,5 В
- Ток потребления: не более 50 мА
- Быстродействие: время переключения не более 10мс
- Тип высокочастотных соединителей: 2.92 мм
- Интерфейс управления: USB Type C, RS485
- Габариты: 74 x 98 x 34 мм
- Масса: 0,4 кг
- Возможность крепления как в горизонтальном, так и вертикальном положении.

Технические характеристики

	от 1 МГц до 10 ГГц	3,5			
Kondahumana asang angga punggungga kanana as	от 10 ГГц до 20 ГГц	5,5			
Коэффициент ослабления включенного канала, дБ, не более:	от 20 ГГц до 30 ГГц	7,0			
	от 30 ГГц до 40 ГГц	8,5			
Коэффициент изоляции между портами, дБ, не менее:	от 1 МГц до 40 ГГц	40			
КСВН, не более:	от 1 МГц до 40 ГГц	2,0			
Максимальная мощность сигнала при работе на внутреннюю нагрузку, дБм, не более	от 1 МГц до 40 ГГц	18			
Максимальная мощность сигнала при включенном канале и во время коммутации, дБм, не более	от 1 МГц до 40 ГГц	30			
Максимальное постоянное напряжение на портах, В, не более	16	16			
Напряжение питания, В	5 ±0,5				
Ток потребления, мА, не более	50				
Время переключения, мс, не более	от 1 МГц до 40 ГГц	10			
Габаритные размеры (длина ширина высота), мм, не более	74 × 98 × 34				
Масса, кг, не более	0,4				
Va	температура окружающего воздуха, °C	от 0 до 45			
Условия эксплуатации:	относительная влажность воздуха, %	от 40 до 90			

Код	Назначение
MK104-40TM	СВЧ коммутатор 40 ГГц

Ключи тарированные КТ-8, КТ-19

- Эргономичность формы
- Износостойкое покрытие методом анодирования алюминия
- 100% готовность к метрологической поверке
- Размер зева 8 мм, 19 мм
- Момент силы в стандартном исполнении 0,56/0,9/1,35 H⋅м
- Интервал поверки 1 год

Краткое описание

Тарированные ключи применяются монтажниками на участках сборки СВЧ-трактов, на производственных линиях и радиоинженерами в лабораториях при макетировании РЭА. Основное назначение этих изделий - это осуществление затяжки соединителей с определенным нормированным усилием. Например, для SMA соединителей и переходов момент силы должен быть равен 0,56 ± 0,1 H⋅м, а для N (или тип III) – должен быть равен 1,35 ± 0,2 H⋅м.

Использование тарированных ключей обеспечивает постоянство момента затяжки СВЧ-соединителей, что гарантирует повторяемость и воспроизводимость результатов измерений. Кроме того, ключи позволяют защитить сопрягаемые части соединителей от чрезмерной затяжки и деформации.

Ключи серии KT-8 и KT-19 имеют два рабочих положения для затягивания соединений с правой или левой резьбой.

Метрологическая поверка

Тарированные ключи являются инструментами, предназначенными для индустриального использования, которые эксплуатируются при регулярных физических нагрузках. В процессе работы ключи подвергаются различным механическим воздействиям, что ведет к ухудшению их технических характеристик. Например, пружина задающего механизма со временем теряет упругость, а подвижные элементы – изнашиваются. В результате этого может происходить срабатывание механизма с несоответствующим показателям моментом силы.

Поэтому для инструментов серии КТ-8, КТ-19, используемых при ответственных работах, является обязательной периодическая метрологическая поверка, которая должна выполняться не реже, чем 1 раз в год в любом аккредитованном метрологическом учреждении.

Доступны к заказу:

Код	Описание	Момент силы, Н∙м	Размер зева, мм
KT-8-0,56	Ключ тарированный для соединителей типа SMA; тип IX	0,56 ± 0,1	8
KT-8-0,9	Ключ тарированный для соединителей типа 2,4 мм; типа 2,92 мм; типа 3,5 мм; типа IX	нителей типа 2,4 мм; типа 0,9 ± 0,1	
KT-19-1,35	Ключ тарированный для соединителей типа N; типа III	1,35 ± 0,2	19

Ключи поддерживающие КП-6, КП-7, КП-8, КП-14, КП-19, КП-20

- Эргономичность формы
- Износостойкая лазерная маркировка
- Прочная инструментальная сталь
- Размер зева 6/7/8/14/19/20 мм
- Варианты работы с ключом: торцевой или боковой захват гайки

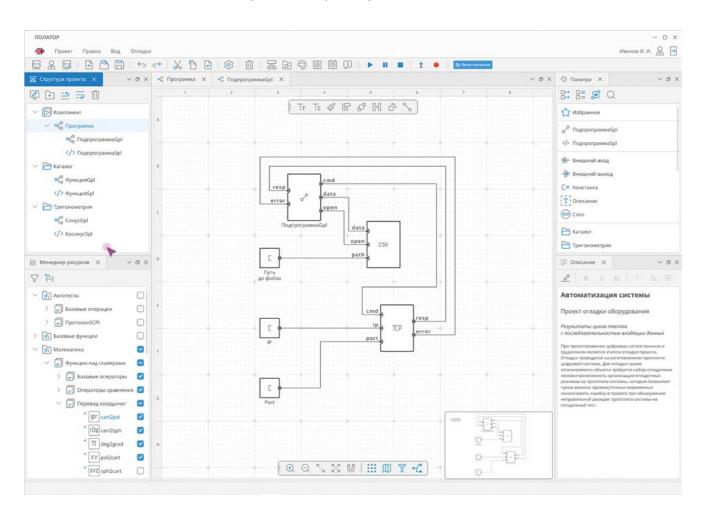
Краткое описание

Качественный монтаж СВЧ-трактов с применением различных соединителей требует использования поддерживающих ключей. Поддерживающие ключи - это не только удобство в повседневной работе, но и забота о соединителях, потому что использование необходимого набора инструментов оберегает разъёмы от прокручиваний и несоостности, ведущих к поломке переходов и соединителей.

Таким образом, применяя поддерживающие ключи серии КП, Вы получаете ожидаемый результат и стабильность СВЧ-характеристик коаксиальных кабельных соединений.

Код	Описание	Размер зева, мм
КП-6	Ключ поддерживающий применяется для работы с соединителями типа RPC-1.00	6
КП-7	Ключ поддерживающий применяется для работы с различными типами соединителей	7
КП-8	Ключ поддерживающий применяется для работы с соединителями типа 2,4 мм; типа 2,92 мм; типа 3,5 мм; типа IX, вар. 3; типа SMA; типа IX	8
КП-14	Ключ поддерживающий применяется для работы с соединителями типа III; типа N	14
КП-19	Ключ поддерживающий применяется для работы с различными типами соединителей	19
КП-20	Ключ поддерживающий применяется для работы с соединителями типа NMD 2,4 мм; типа NMD 2,9 мм; типа NMD 3,5 мм	20

САПР «Полатор»



- Российский Реестр программного обеспечения №17938
- Моделирование и проектирование
- Отладка: виртуальные испытания и стенды

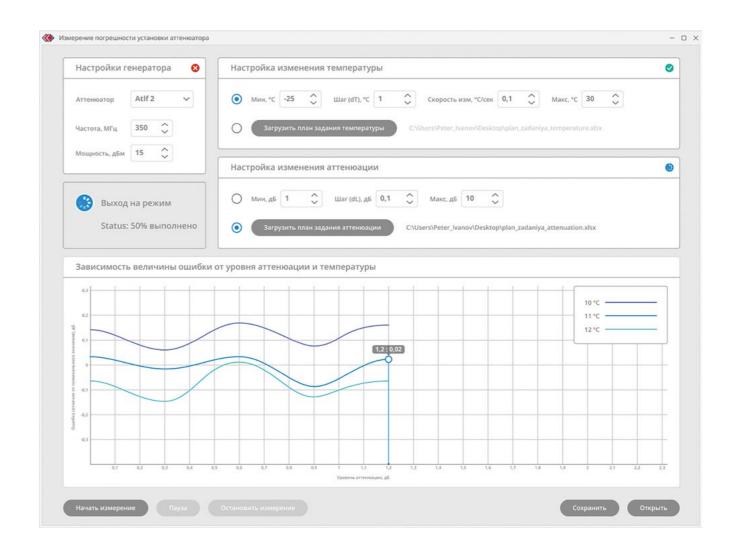
Краткое описание

Программное обеспечение «Полатор» – это специализированная система автоматизированного проектирования (САПР), позволяющая использовать подходы программной инженерии для решения следующих задач:

- Автоматизированная поверка и калибровка измерительных приборов;
- Автоматизированные аттестационные испытания;
- Отладка изделий по итогам моделирования и проектирования.

САПР ориентирована на аналого-цифровую симуляцию и реализует две парадигмы вычислений: классическую, фон Неймана, и параллельную, управляемую потоками данных (DataFlow)

При этом «Полатор» имеет несколько проблемно-ориентированных высокоуровневых языков программирования и вводит такие понятия как:


- «Виртуальные испытания»
- «Виртуальные стенды»
- «Виртуальные полигоны»

Разработчику предоставляется расширяемая библиотека элементов и возможность повторного использования готовых решений и их частей. Также даётся возможность подключения объектов физического мира (АСУ, АСУТП, программно-аппаратные системы, измерительная техника, приборы, ASIC).

Полатор - это программное обеспечение, предлагающее расширения библиотеки встроенного графического языка программирования.

- Вычислительные алгоритмы создаются путем их выбора из библиотеки элементов языка и коммутации
- Использование алгоритмических и математических методов, нейронных сетей, аппарата нечеткой логики, генетических алгоритмов и др.
- В случае тонкой настройки, используется текст-ориентированный скрипт

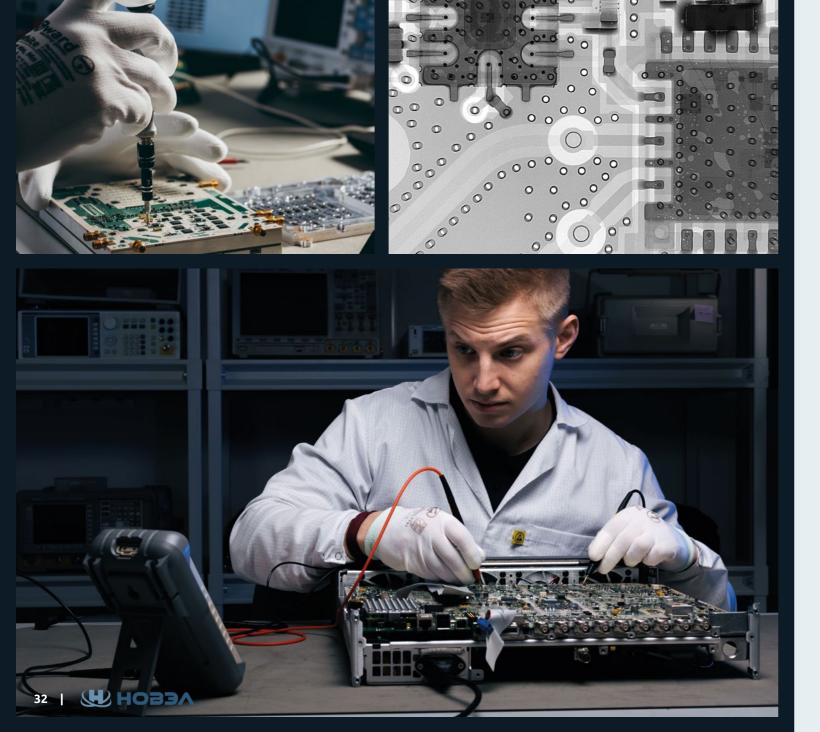
Две парадигмы, классическая Фон Неймана и параллельная управляемая потоками данных (DataFlow), позволяют создавать сложные вычислительные модели.

Автоматизированный комплекс радиоизмерений

Автоматизация радиоизмерений позволяет за ограниченное время перерабатывать большие потоки измерительной информации. Такой подход позволяет получить наиболее достоверные сведения об объекте испытаний путём увеличения числа измерительных точек как в частотной, так и в амплитудной области. Это необходимо при проведении научных исследований, разработке, производстве и эксплуатации современного радиоэлектронного оборудования, средств радиолокации, радионавигации, связи и телевидения, космической техники.

Некоторые преимущества автоматизации радиоизмерений:

- удобство и сокращение рутинных операций для оператора;
- автоматизация процессов измерений, обработки и регистрации их результатов позволяет исключить из результатов измерений субъективные погрешности оператора;
- возможность статистической обработки результатов измерений;
- возможность программным способом перестраивать систему для измерений различных физических величин и менять режим измерений, при этом никаких изменений в аппаратной части не требу-
- возможность коррекции погрешностей через калибровку и температурные поправки;
- высокая гибкость и быстродействие при перестройке систем под различные задачи;
- возможность интеграции с компьютерными сетями для передачи данных;
- прогнозирование отказов элементов аппаратуры.


Имея многолетний опыт испытаний собственных радиоизмерительных приборов и их составных частей, АО «ПК «Новэл» предлагает комплексную услугу по разработке автоматизированных измерительных стендов, включая подробный анализ задачи, подбор подходящего оборудования, организацию интерфейсов информационного обмена, разработку программного обеспечения, а также эксплуатационной и программной документации, методик испытаний, в том числе, при необходимости, с соответствующим грифом секретности.

Сервисный центр

Современный контрольно-измерительный прибор – это сложный программно-аппаратный комплекс, требующий особого и технически грамотного подхода. Сервисные инженеры ПК «Новэл» обладают большим опытом и всеми необходимыми знаниями, инструментами и документацией, чтобы эффективно устранять подавляющее большинство неисправностей любого измерительного оборудования.

Наш сервисный центр – это:

- бесплатная диагностика
- ремонт любой сложности вплоть до компонентного уровня
- восстановление заводской калибровки (в том числе на приборах иностранного производства)
- переустановка и обновление программного обеспечения
- работа с неисправностями на уровне микросборок (замена компонентов, разварка)

Метрологическая лаборатория

Для обеспечения достоверности полученных данных в ходе измерений, необходимо быть уверенным, что прибор обеспечивает метрологические характеристики. Вот почему ПК «Новел» уделяет особое внимание обеспечении метрологии.

Наша Метрологическая лаборатория – это:

- квалифицированные специалисты;
- наличие современного оборудования для выполнения всех необходимых работ по калибровке и поверке измерительного оборудования;
- Приказ Федеральной службы по аккредитации № Аа-204 от 30.08.2021 г.

Область аккредитации:

- частотомеры электронно-счетные: 0,001 Гц 50 ГГц;
- анализаторы спектра и сигналов: 0,001 Гц 50 ГГц;
- анализаторы цепей: 100 кГц 50 ГГц;
- генераторы сигналов: 0,001 Гц 50 ГГц;
- генераторы импульсов: 1 нс 1000 с;
- аттенюаторы: (0 50) ГГц;
- переключатели коаксиальные: (0 40) ГГц.

Диагностика и ремонт радиоизмерительной техники

- Анализаторы спектра
- Анализаторы сигналов
- Антенны
- Блоки переноса частоты
- Блоки индикации аттенюаторов
- Векторные анализаторы цепей
- Вольтметры, в том числе, селективные
- Генераторы сигналов
- Измерители коэффициента шума
- Измерители мощности
- Измерители фазовых шумов
- Измерительные усилители
- Компараторы
- Осциллографы (за исключением аналоговых)
- Портативные анализаторы
- Частотомеры

Наши компетенции

Конструкторское бюро АО «ПК «Новэл» предлагает следующие услуги:

Разработка топологии плат

- одно-, двух- и многослойные печатные платы любой степени сложности;
- разработка плат с DDR2/DDR3/DDR4, PCIe 3.0, JESD-204B, (Q)SFP+, high speed сигналов до 25 Гб/с;
- проектирование платы под конкретное производство по желанию заказчика с учетом выбранного способа монтажа (ручной/автоматический);
- возможность применения материалов с низкими потерями в различных комбинациях;
- моделирование топологии на всех этапах разработки (ADS, Hyperlynx, HFSS, MWS);
- единая библиотека компонентов, соответствующая стандартам IPC, ГОСТ и внутреннему стандарту предприятия;
- тесная интеграция процесса разработки топологии ПП с другими инструментами проектирования и PLM-, ERP- системами.

Моделирование СВЧ

Разработчики используют программные продукты по системному и электромагнитному анализу: SystemVue и ADS Keysight, AWR – National Instruments, которые позволяют моделировать весь радиотехнический тракт:

- широкое разнообразие проверенных средств проектирования ВЧ и СВЧ систем, устройств со смешанными сигналами и электромагнитного моделирования;
- возможности импорта/экспорта данных в САПР других производителей по созданию топологии печатных плат, проектирования дискретных и интегральных ВЧ и СВЧ устройств, поддерживающей различные технологии изготовления (например, GaAs, SiGe, GaN или кремниевые КМОП технологии);
- электромагнитное моделирование (Momentum и FEM), что позволяет получить более точные результаты при разработке блоков и узлов радиоэлектронных устройств;
- объединение в одном проекте моделей, созданных по различным технологиям, нет ограничений лишь одной технологией изготовления интегральной схемы или модуля при верификации проектов.

Разработка электронного оборудования

- схем электрических принципиальных и схем соединений для электронной аппаратуры различной степени сложности (от одноплатных решений до программно-аппаратных комплексов, состоящих из десятков модулей);
- СВЧ-трактов, измерительной и малошумящей аппаратуры, СВЧ-кабельных сборок (до 40 ГГц);
- систем обработки данных реального времени (на основе FPGA и DSP) высокой производительности;
- устройств преобразований сигналов (АЦП, ЦАП) с частотами дискретизации до 6 ГГц;
- модулей формирования сигналов тактирования с низкими фазовыми шумами;
- систем питания, в том числе бортового, со специальными требованиями к уровню электромагнитного излучения.

Работа в компании Стабильное развитие Разработка и производство электроники IT – технологии Новэл, один из лидеров в сфере отечественного приборостроения приглашает к сотрудничеству талантливых специалистов, а также студентов последних курсов и выпускников технических ВУЗов, желающих получить уникальный опыт в сплоченной команде единомышленников – настоящих профессионалов своего дела! Приглашаем: • Инженеров-разработчиков СВЧ-устройств • Инженеров ПЛИС • Программистов С++, С# • Схемотехников Системотехников • Математиков • Алгоритмистов

Отправить резюме можно на почту info@novel-pk.ru

Справочный материал

Таблица совместимости типов соединителей																
	1.85	2.4	2.92	3.5	ВМА	МВМА	III	N	7	SMA	IX	IXe2	IXe3	SMP	TNC	MSMP
1.85	+	+														
2.4	+	+														
2.92			+	+						+		+				
3.5			+	+						+		+				
ВМА					+											
МВМА						+										
III							+									
N								+								
7									+							
SMA			+	+						+		+				
IX											+					
IXe2			+	+						+		+				
IXe3													+			
SMP														+		
TNC															+	
MSMP																+

Табл	Таблица зависимости средней пропускаемой мощности от частоты															
ГГЦ	MSMP	SMP	1.85/ 2.4	2.92	3.5	SSMA	7	BNC	ВМА	SMA	TNC	TNC (BY)	SC	N	HN	7/16
1	87	115	120	140	270	355	420	450	560	620	1750	660	1950	1800	2000	4200
2	60	75	80	93	190	250	300	310	390	450	1250	490	1450	1400	1500	2900
3	50	58	63	72	160	200	250	250	300	360	900	400	1150	1000	1300	2400
4	43	51	56	67	140	170	200	215	275	300	780	300	950	900	990	2100
5	38	45	50	58	125	160	180	190	240	260	620	300	820	800	890	1800
6	35	40	45	53	115	145	175	175	210	240	600	270	750	700	800	1700
7	32	37	42	50	100	140	160	160	190	230	550	220	690	650	750	1600
8	30	35	40	46	92	130	150	155	180	210	510	200	650	600	700	
9	28	32	37	43	88	120	140	150	170	195	490	190	600	570		
10	27	30	35	40	85	115	140	140	160	180	470	180	580	530		
20	18	20	25	27	56	75	90		120	130			570	420		
30	16	15	20	22	46	60			100							
40	14	12	17	19												
50	13	11	16													
60	11	10	15													
65	10	9	14													

Виды СВЧ сое,	динителей ¹		
Тип соединителя	Изображение	Частотный диапазон	Механическая совместимость с другими типами соединителей
BNC ²		от 0 до 3 ГГц	Несовместим
N³		от 0 до 18 ГГц	Несовместим
SMA ⁴		от 0 до 18 ГГц	PC 3.5, PC 2.92 (K)
PC 3.5		от 0 до 34 ГГц	SMA, PC 2.92 (K)
PC 2.92 (K)		от 0 до 40 ГГц	SMA, PC 3.5
PC 2.4		от 0 до 50 ГГц	PC 1.85 (V)
PC 1.85 (V)		от 0 до 67 ГГц	PC 2.4

¹ Типовые СВЧ-соединители иностранного производства с волновым сопротивлением 50 Ом.

Рекомендации по использованию, хранению и обслуживанию СВЧ соединителей

Самая распространённая причина поломки или неисправности соединителей и кабелей – несоблюдение правил корректной стыковки\расстыковки соединителей.

Установка качественного соединения

Предварительное соединение

- 1. Обеспечьте заземление себе и всем подключаемым устройствам. Наденьте заземляющий браслет на запястье и производите работы на антистатическом коврике.
- 2. Визуально проверьте соединители на отсутствие загрязнений, посторонних объектов внутри соединителя и его резьбе, а также убедитесь, что центральный проводник не смещён, а ламели соединителя типа «розетка» не погнуты.
- 3. При необходимости очистите соединители с использованием подходящего по размеру тампона, смоченного в изопропиловом спирте.
- 4. Аккуратно выровняйте соединители относительно друг друга. Центральный проводник соединителя типа «вилка» должен централизовано вставляться в гнездовое ложе соединителя типа «розетка» без усилий и заметных препятствий.
- 5. Направьте соединители ровно один в другой. Не поворачивайте и не вращайте соединители относительно друг друга. Фиксация происходит исключительно гайкой соединителя типа «вилка», которую следует накручивать руками, придерживая оба соединителя в неподвижном состоянии.
- 6. Далее используйте тарированный ключ с фиксированным усилием для дозатяжки гайки соединителя и поддерживающий ключ для фиксации неподвижных частей соединителей.
- 7. Убедитесь, что соединители держатся должным образом, отсутствует люфт в частях соединителей и место соединения неподвижно. Освободите соединители от любого стороннего давления со стороны длинных или тяжёлых кабелей или устройств.

Стыковка соединителей

Во избежание изгиба на излом на внутренней поверхности соединителей всегда поддерживайте кабели и соединения.

Расстыковка соединителей

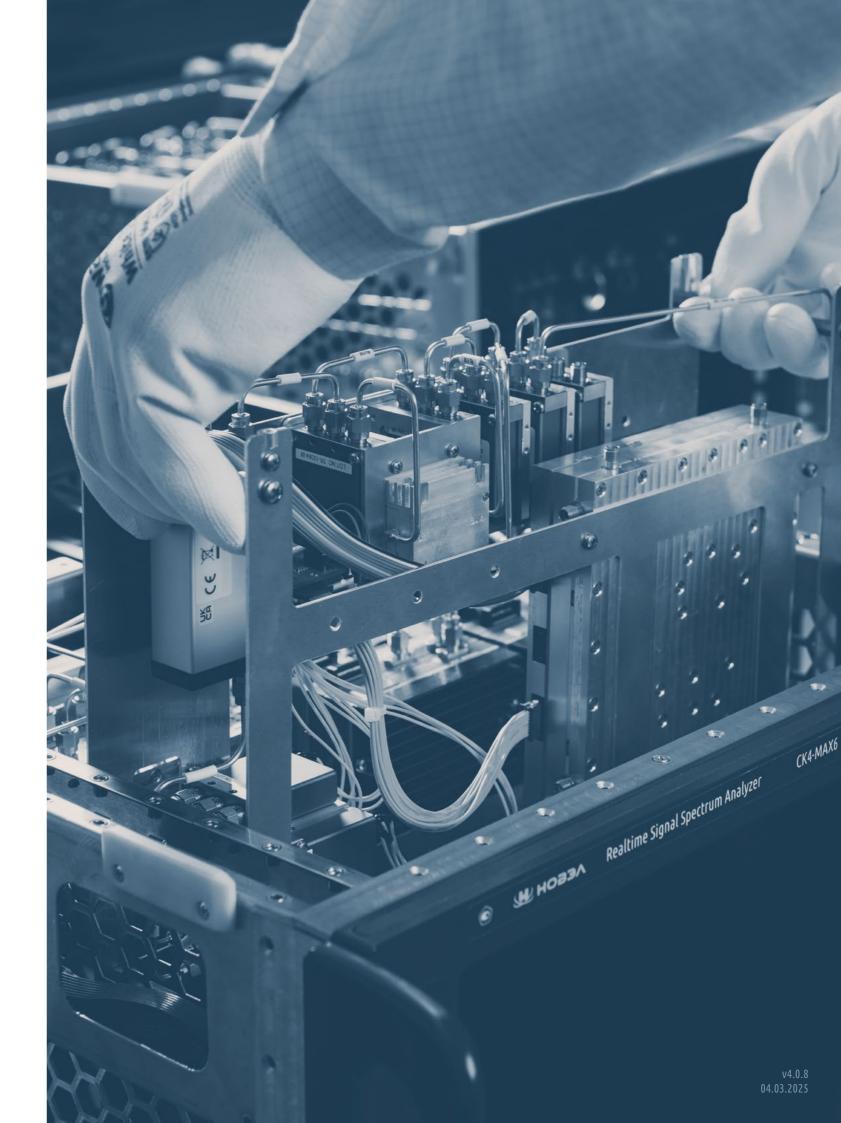
Каждый тип соединителя имеет собственные параметры и размеры, поэтому важно использовать соединители одного типа. Использование разных типов соединителей допускается лишь при обеспечении минимального усилия включения и выключения. Это означает, что гнездовой контакт должен быть больше или равен штыревому контакту во избежание излишнего трения на ламели гнездового контакта и порчи поверхностей обоих соединителей. При использовании соединителей с штыревым контактом больше гнездового происходит изгиб ламелей гнездового контакта, и, как следствие, ухудшение качества передаваемого сигнала и сокращение срока жизни соединителя.

Также, категорически не рекомендуется соединять устройства с соединителями общего применения и прецизионного класса.

Хранение и транспортировка

Правильное хранение калибровочных мер и коаксиальных переходов включает в себя защиту разъёмов колпачками, защищающими центральные жилы и внутреннее пространство переходов. Транспортировку рекомендуется производить либо в заводской упаковке, либо в кейсах с ложементами, имеющими отдельные отсеки под каждый переход.

² Доступен вариант с волновым сопротивлением 75 Ом. Возможно подключение соединителя с волновым сопротивлением 50 Ом к соединителю с волновым сопротивлением 75 Ом.


³ Доступен вариант с волновым сопротивлением 75 Ом. Запрещено подключение соединителя с волновым сопротивлением 50 Ом к соединителю с волновым сопротивлением 75 Ом (приведет к повреждению соединителей)!

⁴ Экономичный и более прочный, чем соединитель РС 3.5, но хуже по РЧ-характеристикам.

Таблица диапазонов частот и длин волн согласно регламенту Международного союза электросвязи										
Наименование диапазона	Частота, f	Длина волны, λ	Наименование диапазона частот	Наименование диапазона частот						
VLF	от 3 до 30 кГц	от 100 до 10 км	Очень низкие частоты (ОНЧ)	Связь с подводными лодками						
LF	от 30 до 300 кГц	от 10 до 1 км	Низкие частоты (НЧ)	Радиомаяки						
MF	от 300 кГц до 3 МГц	от 1000 до 100 м	Средние частоты (СЧ)	АМ радиовещание, ионосферная радиосвязь						
HF	от 3 до 30 МГц	от 100 до 10 м	Высокие частоты (ВЧ)	Коротковолновая радиосвязь, загоризонтная радиолокация						
VHF	от 30 до 300 МГц	от 10 до 1 м	Очень высокие частоты (ОВЧ)	Телевидение, ЧМ радиовещание, тропосферная радиосвязь						
UHF	от 300 МГц до 3 ГГц	от 1 до 0,1 м	Ультравысокие частоты (УВЧ)	Телевидение, интернет, мобильная связь, спутниковая навигация, микроволновые печи						
SHF	от 3 ГГц до 30 ГГц	от 10 до 1 см	Сверхвысокие ча- стоты (СВЧ)	Радиолокация, спутниковое телевещание, беспроводные компьютерные сети						
EHF	от 30 ГГц до 300 ГГц	от 10 до 1 мм	Крайне высокие частоты (КВЧ)	Радиоастрономия, высокоскоростная радиорелейная связь, автомобильная радиолокация						

Области примен	нения и частотн	ные диапазоны	РЛС	
Наименование диапазона	Этимология	Диапазон частот	Длина волны	Примечания
HF	high frequency	от 3 до 30 МГц	от 10 до 100 м	Радары береговой охраны, «загоризонт- ные» РЛС
Р	previous	до 300 МГц	от 1 м	Использовался в первых радарах
VHF	very high frequency	от 50 до 330 МГц	от 0,9 до 6 м	Обнаружение на больших дальностях, ис- следования земли
UHF	ultra high frequency	от 300 до 1000 МГц	от 0,3 до 1 м	Обнаружение на больших дальностях (например, артиллерийского обстрела), исследования поверхности земли, лесов
L	Long	от 1 до 2 ГГц	от 15 до 30 см	Наблюдение и контроль за воздушным движением
S	Short	от 2 до 4 ГГц	от 7,5 до 15 см	Управление воздушным движением, метео- рология, морские радары
С	Compromise	от 4 до 8 ГГц	от 3,75 до 7,5 см	Метеорология, спутниковое вещание, промежуточный диапазон между X и S
X		от 8 до 12 ГГц	от 2,5 до 3,75 см	Управление и наведение изделий ОПК, морские радары, погода, картографирование среднего разрешения; в США диапазон 10,525 ГГц ± 25 МГц используется в РЛС аэропортов
Ku	under K	от 12 до 18 ГГц	от 1,67 до 2,5 см	Картографирование высокого разрешения, спутниковая альтиметрия
К	нем. kurz — «короткий»	от 18 до 27 ГГц	от 1,11 до 1,67 см	Использование ограничено из-за сильного поглощения водяным паром, поэтому используются диапазоны Ки и Ка. Диапазон К используется для обнаружения облаков, в полицейских дорожных радарах (24,150 ± 0,100 ГГц)
Ka	above K	от 27 до 40 ГГц	от 0,75 до 1,11 см	Картографирование, управление воздушным движением на коротких дистанциях, специальные радары, управляющие дорожными фотокамерами (34,300 ± 0,100 ГГц)
mm		от 40 до 300 ГГц	от 1 до 7,5 мм	Миллиметровые волны, делятся на два следующих диапазона V и W
V		от 40 до 75 ГГц	от 4,0 до 7,5 мм	Медицинские аппараты КВЧ, применяемые для физиотерапии, а также аппараты для диагностики (например, по методу Фолля)
W		от 75 до 110 ГГц	от 2,7 до 4,0 мм	Сенсоры в экспериментальных автоматических транспортных средствах, высокоточные исследования погодных явлений

ιБмВт	В	Ро	дБмВт	В	Po	дБмВт	мВ	Po	дБмВт	мкВ	Ро
+53	100.0	200 Вт	0	.225	1.0 мВт	-49	0.80		-98	2.9	
+50	70.7	100 Вт	-1	.200	.80 мВт	-50	0.71	.01 мкВт	-99	2.51	
+49	64.0	80 BT	-2	.180	.64 мВт	-51	0.64		-100	2.25	.1 пВ
+48	58.0	64 Вт	-3	.160	.50 мВт	-52	0.57		-101	2.0	
+47	50.0	50 BT	-4	.141	.40 мВт	-53	0.50		-102	1.8	
+46	44.5	40 BT	-5	.125	.32 мВт	-54	0.45		-103	1.6	
+45	40.0	32 BT	-6	.115	.25 мВт	-55	0.40		-104	1.41	
+44	32.5	25 Вт	-7	.100	.20 мВт	-56	0.351		-105	1.27	
+43	32.0	20 Вт	-8	.090	.16 мВт	-57	0.32		-106	1.18	
+42	28.0	16 Вт	-9	.080	.125 мВт	-58	0.286			нВ	
+41	26.2	12.5 Вт	-10	.071	.10 мВт	-59	0.251		дБм	пУ	
+40	22.5	10 Вт	-11	.064		-60	0.225	.001 мкВт	-107	1000	
+39	20.0	8 Вт	-12	.058		-61	0.200		-108	900	
+38	18.0	6.4 Вт	-13	.050		-62	0.180		-109	800	
+37	16.0	5 BT	-14	.045		-63	0.160		-110	710	.01 п
+36	14.1	4 BT	-15	.040		-64	0.141		-109	640	
+35	12.5	3.2 BT	-16	.0355		_	_		-112	580	
+34	11.5	2.5 BT	-	-		дБм	мкВ		-113	500	
+33	10.0	2 BT	дБм	мВ		-65	128		-114	450	
+32	9.0	1.6 BT	-17	31.5		-66	115		-115	400	
+31	8.0 7.10	1.25 Вт 1.0 Вт	-18 -19	28.5 25.1		-67 -68	100 90		-116 -117	355 825	
+30	6.40	800 мВт	-19	22.5	.01 мВт	-69	80		-117	285	
+28	5.80	640 мВт	-21	20.0	.01 MD1	-70	71	.1 нВт	-119	251	
+27	5.00	500 мВт	-22	17.9		-71	65	.11101	-120	225	.001 п
+26	4.45	400 мВт	-23	15.9		-72	58		-121	200	
+25	4.00	320 мВт	-24	14.1		-73	50		-122	180	
+24	3.55	250 мВт	-25	12.8		-74	45		-123	160	
+23	3.20	200 мВт	-26	11.5		-75	40		-124	141	
+22	2.80	160 мВт	-27	10.0		-76	35		-125	128	
+21	2.52	125 мВт	-28	8.9		-77	32		-126	117	
+20	2.25	100 мВт	-29	8.0		-78	29		-127	100	
+19	2.00	80 мВт	-30	7.1	.001 мВт	-79	25		-128	90	
+18	1.80	64 мВт	-31	6.25		-80	22.5	.01 нВт	-129	80	
+17	1.60	50 мВт	-32	5.8		-81	20.0		-130	71	.1 фЕ
+16	1.41	40 мВт	-33	5.0		-82	18.0		-131	61	
+15	1.25	32 мВт	-34	4.5		-83	16.0		-132	58	
+14	1.15	25 мВт	-35	4.0		-84	11.1		-133	50	
+13	1.00	20 мВт	-36	3.5		-85	12.9		-134	45	
+12	.90	16 мВт	-37	3.2		-86	11.5		-135	40	
+11	.80	12.5 мВт	-38	2.85		-87	10.0		-136	35	
+10	.71	10 мВт	-39	2.5		-88	9.0		-137	33	
+9	.64	8 мВт	-40	2.25	.1 мкВт	-89	8.0		-138	29	
+8	.58	6.4 мВт	-41	2.0		-90	7.1	.001 нВт	-139	25	04.1
+7	.500	5 MBT	-42	1.8		-91	6.1		-140	23	.01 ф
+6	.445	4 MBT	-43	1.6		-92	5.75				
+5	.400	3.2 MBT	-44	1.4		-93	5.0				
+4	.355	2.5 MBT	-45 46	1.25		-94	4.5				
+3	.320	2.0 MBT	-46 47	1.18		-95 06	4.0				
+2	.280	1.6 мВт 1.25 мВт	-47 -48	1.00 0.90		-96 -97	3.51				

АО "ПК "НОВЭЛ"

117587, г. Москва, ш. Варшавское, д. 125, стр. 1

Телефон: +7 (495) 120-30-42 E-mail: info@novel-pk.ru

www.novel-pk.ru

